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DAMPING THE TRANSVERSE RESISTIVE WALL INSTABILITY 
IN THE AGS BOOSTER 

E. RAKA 

I. Introduction 

When accelerating protons it is expected that due to the large peak circulating 
currents ( > 3 amp), the resistive wall impedance of the vacuum chamber will cause the 
beam to become unstable against coherent coupled bunch oscillations in both the 
horizontal and vertical planes. Theoretical calculations1 estimate the growth rate of 
the lowest order coupled bunch mode to be = 300 set-l assuming that the beam is well 
above the stability threshold. However, if we scale from observations of this instability 
in the AGS, whose vacuum chamber is made of the same type of stainless steel and has 
essentially the same cross-section, then the growth rate at 1.5 GeV kinetic energy and 
1.5 x lo1 3 protons would be 1500 set-l for the vertical plane. 

In order to control this instability transverse feedback damping systems for both 
planes will be required. A conceptual design of such a system employing digital signal 
processing and bunch to bunch correction signals will be presented. In addition, the 
scaling of growth rates between the AGS and its Booster will be discussed. Finally, 
formulas for calculating the effective damping rate of a digital feedback system will be 
derived. These are applied to the cases of zero chromaticity (X = 0) for m = 0 and 
non-zero chromaticity (X = X) for m = 0, 1, and for the two unstable coupled bunch 
modes (-5 + Q) and (-6 + Q). 

II. Growth Rate Scaling (AGS, Booster) 

We use the following expression due to Sacherer2 for the growth rate due to the 
resistive wall impedance. 

Z, (w,> F,(x) + Z,b,> F; (x-up 7~) (1) 

Here I = total current = Nef,; w. the rotation (angular) frequency; N the number of 

protons; M the numb;; of Qbunches; B = ZM/27rR with I the bunch length and R the 

machine radius; X = WOT 

rl with 7~ the bunch length and < = nQ/Q/np/p the 

chromaticity. ZL is the resistive wall impedance in ohmmeter and Fm (x), F, (x) are 
form factors with 

F;= 2 
B 

where w t = x/71 and 

F, (x> = ; s_: h&4 dw 

(3) 



with ZL being the resistive wall impedance which is = l/E 

Now&-&) = I imW12 where pm (w) is the Fourier transform of pm (t) the 
oscillating part of the charge distribution. It is what one would observe by viewing the 
output of a position sensitive detector (from which any orbit offset has been removed) 
for a given bunch on an oscilloscope. The signal is of the form 

Ay (1: p,(t)e jwtt+2?rkQ (4) 

for the kth revolution. Sacherer assumes that the pm(t) are approximately sines or 
cosines where the (m + 1) refers to the number of half wavelength along the bunch or m 
refers to the number of nodes along the bunch. Then one can write 

cos (m+l) 7r t/71 m - 0, 2, 4 . . . . 
Pm = 

sin (m+l) 7rt/71 m = 1, 3, 5 . . . . 
(5) 

and 

hm = (m+1)2 7.-k? 
2 2 [l+cosxy] 

lr2 [Y2 - (m+1)2]2 (6) 

with the plus sign for m even and the minus for m odd and y = UT&~. 

We assume that the resistive wall impedance is the sole source of any instability 
and rewrite equation (1) for the Booster as 

Aurn - 
j e2 BNgf, 
(m+l)4xQ~fo2aRgymo[ 

IB 

Now we also assume that NB/RB = NAGS/RAGS and that X = 0 so that Fm(0) = 0. 
Then the m = 0 mode has by far the largest growth rate and we can write 

Aw,(AGS) = 
[Zl(wp)F’(~p~~)l~~s 

QAGS 

Aw,(Booster) = [Zl(~p)F’(~p~~~)lg 

QB 

For the resistive wall impedance the coupled bunch mode giving rise to the lowest 
value of wp will have the largest growth rate. Sacherer defines o as w = (p+Qbo, 
-rn<p< 00 for a single bunch or independent bunch mot&. 8 or M bunches there 
are M coupled bunch modes so that only every Mth line occurs with p = n + kM, 
-=<k<m.Ifp< - Q then wp is negative and 2, is also negative, i.e., Z,=R J Iwp I/up 
where .R is the machine radius and J 1 up 1 is the surface impedance of the vacuum cham- 
ber in ohms/square. It is the negative frequencies in the coupled bunch spectrum that 
produce negative contributions to nwm and hence growth while the positive frequencies 
contribute damping. In general, there are M/2 unstable coupled bunch modes so that the 
lowest frequency line is for the n = 1 mode i.e., p = -5 in the Booster and the n = 3 mode 
or p = -9 for the AGS. Here 27rn/M is the phase shift between bunches of the coupled 
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bunch motion. 

Thus, for QB 
and we can write 

= 4.8 and QAGS = 8.8 we have wp = .2w, for both machines 

Aw,,(Booster) F&B QAGS= 8.8 F; 1 
- a 
Aq,(AW QB- F;GS RAGS = 9.6 T FAGS 4 

where we have used RB = RAGS /4 and fB = 4fAGS. Now assuming the same 7~ in 

both machines we note that wp 7~ in F’will be four times larger for the Booster than the 
AGS so that FB < FAGS y 0.8 for the lowest frequency line .2 wo. Also the first pair 
of lines of the spectrum, at frf f (9 - Q) f, in the AGS and at frf + (5 - Q) f. in the 
Booster, produce a greater net reduction in the growth rate for the Booster than for the 
AGS. This is because the lower sideband corresponds to a positive frequency while the 
upper line adds to the growth rate. We note here that for the n = 2 mode the first 
negative frequency line in the spectrum would be (-7 + 4.8) f. = -2.2 f. while the first 
positive frequency would be 0.8 f, so that this mode is the only stable mode of the three (n 
= 0, 1,2). 

Returning to the n = 1 mode we conclude that for the same resistive wall impe- 
dance per unit length the maximum growth rate in the Booster would be < l/4 that of 
the AGS for the same line change density N/R. Or for the same number of particles in 
both machines nwo(Booster) < nw,(AGS) at the same energy. Now in the AGS the 
measured growth rate of the n = 3 mode on a 1.5 GeV kinetic energy flat top is 900 
set- l at 9 x 10’ * protons in the vertical plane where <a0 so that X = 0 also. We remark 
that the growth rate also scales as (p/r) x l/M for fixed Q so that if the beam were 
unstable at 200 MeV the growth rate would be 1.68 times greater. This, of course, 
assumes the same F, and zero x hence, the Booster growth rate at 1.5 GeV and 1.5 x lo1 3 
proton should be < 1500 set-l at zero X and the same 7~. It will be shown that the type 
of .kicker proposed for the feedback system produces a (np/~)~ that is proportional to (1 + 
e)/fl* 7 while the overall damping rate is - B (np/~)~. This results in an increase of about 
2.5 at 200 MeV over the 1.5 GeV damping rate for the same position error. Thus, the 
growth rate at 1.5 GeV should be used to determine the required damping rate. 

III. Descrintion of the Damning; system 

The position error of each bunch will be processed in such a manner that the 
corresponding correction signal will be applied to the same bunch. It is not feasible to 
employ narrow band analogue feedback as presently used in the AGS3 to the Booster 
(this will be discussed in the appendix). We assume that the pickup electrode signals 
from the vertical pair at QD-8 and a pair halfway between QE-2 and QE-3 and from a 
horizontal pair at the same position and the pair at QE-5 will be available for separate 
processing. Since they are 90° apart at the nominal tune of 4.8 one can obtain any phase 
of the bunch oscillation by a linear combination of the measured displacements. For tunes 
between 4.5625 and 4.95 the phase difference from 7r/2 is < +4O. 

The combined correction signal from each bunch will be delayed 3 (or 4) revolution 
periods (To) before being applied to a 5(k? travelling wave deflector (50 fi strip line 
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kicker) located at the upstream end of SS E-3. In order to obtain damping the phase of 
the correction must be in quadruture with the phase of the bunch oscillation as it passes 
the kicker. For a fixed tune the phase of the correction signal also remains a constant. 
However, due to the long delay between measurement and kick (3 or 4 turns!) small 
changes in tune call for large changes in the correction signal phase. Hence, the need for 
being able to generate a wide range of phase variation for the feedback signal. 

Now the total loop delay should be a multiple of the rotation period, if the pickup 
and kicker are at the same location, in order that the signal derived from a given bunch 
is applied to the same bunch. When this criterion is satisfied then, assuming the 
quadruture phase relation is also satisfied, the system can damp in principal all the 
unstable modes of a multi-bunch ring without exciting the stable modes. Since the 
rotation period changes with energy it is necessary to vary the time delay between 
pickup and kicker. In a pure analogue feedback system this is done by switching cable 
lengths in the signal loop. In a digital system the digitized correction signal is stored in 
a memory whose clock is related to the rotation frequency. The latter type of system, 
i.e., digital processing of the pickup (or error) signal, digital delay, and D/A conversion 
prior to the 5m wideband power amplifiers that drive the deflectors is being developed 
for the AGS. Here only a one turn delay is needed since the rotation period is always 
22.7psec which is sufficient to perform the digital processing and transport the pickup 
signals to a remote location and return it to the kicker on the ring (F-20). In order to 
minimize the amount of development time needed to produce a suitable damping 
system for the Booster it has been suggested to consider using a modification of the 
AGS design. This is why a 3 or 4 turn delay is required for the feedback signal, i.e., in 
order to do the digital processing. Since there is space enough in the E-3 straight section 
for a one meter long kicker the design used in the AGS system can be copied. Both hori- 
zontal and vertical units will be contained in the same chamber as shown in Figure 1. 
They will be driven by four 1OOW power amplifiers; ENI21OOL (10KC - 12 MHz) or 
ARlOOA-15 (35KC - 15 MHz) are suitable candidates. 

I 

Figure 1 

The individual bunch difference signals will be integrated on a turn by turn basis, 
digitized, normalized, combined and stored in a serial memory. Thus, any within the 
bunch amplitude variation due to non-zero X or higher order modes m 21 will not be 
detected. Only net dipole motion of the entire bunch will be sensed. How this affects the 
damping rate for x + 0 and for the m = 0, 1 modes will be described below. We note here 
that the phase of the correction signal could be determined by sensing the quadrupole 
currents of the machine and computing the required combination of the two position 
signals on a real time basis. 
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Damnine; Rate Calculations 

For ideal damping one has a = a,e+ fov2 where 

f- 
pk @P/P),. 

E= 
BP AY/Bp (7) 

is a measure of the open loop (linear) gain of the feedback system. Here f, = @ f, is 
the rotation frequency and pk, BP are the beta functions at the kicker and pickup. In 
the vertical plane /3k a llm and we take BP = 13Sm the value at the D-S pickup so that 
E == 12.2 (~p/p)~ / ny(m). At 1.5 GeV f. = 1.367MHz hence we should have 

e > 1.5~10~~2 - 2.2x10-3 
1.367~10~ 

in order to obtain a damping rate of c fo/2 greater than the maximum expected growth 
rate. For the np, produced by a pair of kicker plates we can write 

AP+) = 
(l+B) e Jg &c sine 

B C 0 
(8) 

where Z, = 377n, P is the peak power at a frequency w delivered to the 50 impedance of 
the: plate(s), R their length, 0 = wa/c and k is a geometrical factor that includes the 
effect of image currents in the vacuum chamber.4. 

k = bb izg 
(l-b 2 ) sind 

a2 fp (9) 
C 

Here Z, = 5m, a is the outer radius of the kicker chamber b the radius of the deflec- 
tion plates and 9 their azimathal extent. We shall assume that k = 4m-l the design 
goal of the AGS deflector. Then for w = 0.25wo, (sin@/@) = 1 and we have at 1.5 GeV 
with R = lm. 

6% = 1.923e 1 377x200 1x4 
Pl .923x2.4moc C 

- 1.02x10-6 

so that a 1.02x10-6 x 12.2 
Ay = 2.2 x 10-3 - 5.65 mm 

should produce full power out of the amplifier (6 = 2 P the average power). 

Now we can write ap, in the following form 

2?rR 
API+ s, (E + v x B),ds 

where E and B are the deflection fields of the kicker. From Sacherer we have the 
definition 
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z, = 
j SznR [E + v x B],ds 

BIAY 
(11) 

where E and B are the fields due to the wall currents induced by the displacement of 
the current I by an amount ay. Hence, for the deflector we can write 

PC 
b= - 

AP~ (~1 

e NAY (w> (12) 

where the j drops out since we assume a 90° phase shift between the displacement ay 
and the kick np,. Now one can also express AUrn as 

j eAI 
Au,, = - 

1 ZL (up) hm (up - q) 
P 

(m+l) ymo2Qwo2rR B 1 hm (up - 00 
(1% 

P 

assuming X = 0 so that WE = 0 and inserting our expression for Z, we 
obtain 

or 

j ep2cI Bc 
Aurn = ~ 

1 Apl(Wp)hm(Wp) 

(m+l) ,9ymoc2Qwo2nR ' eaIAY(mp)BChm(up) 
P 

j PC CAPLhm 1 
urn= - P- - 

(m+l) 27rR 2PAY BChm 

s 
P 

Finally then we can write 

j 
Aw, = - 

f0 

(l+m) 2 
; 4~~) F; b,> 

(14) 

Hence, if we know the transfer function between Apl(w) and Ay(o) we can calculate 
the net damping rate by summing the terms c (up) Fm(wp). In the case of pure 
analog feedback and for m = 0 one can generally have E (u) a constant for all wp up 

to where FA(wp)+O. Then we obtain Au, = jfoc /B for the damping rate. 

Recalling equations 4,5 and putting m = 0 we can write 

AY, - Re [,jw+t+jd +,-j w-t+.&=ri [cos cw+t+d) + cos (w-t-4)] (15) 

wherew + = w +wc; w- = w-wt; w = n/71 ; 4 = 27rkQ. This becomes then 

AYo - % [(COS w + t + cos 0-t) cos+ - (sin w + t - sin w -t)sin+] (15a) 

which for X = Ogives 

7r 

Aye - cos - 
rR 

cos 4 

From m = 1 we obtain 



nY, -%[(sinw+t+sinw’t)cos# + (cosw+t-cosw’t)sin+] (16) 

and for x = 0, Ay, - (sin x~/~~)cos +. 

Now we have assumed that the difference signal Ay(t) is integrated on a bunch by bunch 
turn by turn basis. Hence, for m = 0, X = 0 we obtain 

From now on we shall assume 7~ = l/2 frf or +I = x which is approximately true in the 
Booster at 1.5 GeV. Thus, we have 6 y. - (2/n) cos 9. Next we assume that the voltage 
that is applied to the deflectors is a series of pulses of duration 7rf whose amplitude is - 
6 y. as shown in Figure 2. 

Figure 2 

We must now find the transfer function for this process. 

If we assume that the coherent mode (-5 +Q) is present in a continuous beam 
then one would see a signal at (5Q)f, when measuring Ay (t) at a position sensitive 
pickup. If we were to sample that signal at f,f and locked to the bunch center in phase 
then one would obtain a similar 6 ye(t). 

Hence one can consider that the bunches constitute a sampling of the coherent 
signal (5Q)f, and that the sampling function is PO(t). In the feedback loop 6 y. is 
digitized and stored in memory for 3T, or 4T, before being retrieved (see later about a 
correction to this) and converted into a voltage pulse of duration 7 rf. For the case m = 0, 
x = 0 the 6 y. signal is equivalent to sampling the signal with a 6 function since the integral 
is always proportional to the peak amplitude of Ay(t). Thus, the output pulse can be 
thought of as the “impulse” response of a “sampled data system”, containing a zero order 
data hold, that is used to reconstruct the signal (5-Q)f,t. It can be written as 
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l-ems7rf 7rf 1 -- = -- wtrf / CSWtrf/2> 
sin (- (17) 

S 2 @Gf 2) 

2 

which by definition is the transfer function from ny(~) to np(~) (almost). Actually, the 
full transfer functiy would be 

cos C$ (l-e~-srrf e-slTo 
lr S uw 

where aTo is the overall loop delay and it is assumed that the output voltage level is 
changed at the center of the bunch. If now we reduce the delay by 7rf / 2 (as shown 
in Figure 2) then one should multiply (17a) by es7rf12 - 

Finally, then, for s = jw we obtain 

2 rrf 
; cos 4 -7J- 

sin (W Trf/2) .-NT0 

Wrrf/2 (18) 

i.e., a Sin x/x response (x =WTrf/2). We note here that in the AGS damping system we 
assume voltage pulses of duration (~~f/2) so that the actual time delay should be (T,-~~f/4) 
giving a transfer function 

2 rrf sin (x/2) JUT0 
; co.@ ~ 4 (x/2) 

Returning to the Booster then, we can write for c (u) 

VW 

B llMX2A cos4 7rf sinx e-jwlTo 

e(w) - 
P R 2 X ~yo(~>cos4 

with Aye(w) being thezourier (Laplace for s = j,) transform of Ay(t) and A a gain 
factor. Since h,(w) = 1 po(ti) 1 2 we can write the summation in equation 14 as 

i 
sin (w Trf/2) 

(wp rrf/2) 

BDO (wp) 
P 

where 

271 
Aye(w) = P,(W) = - 

cos (W9/2) 

7r WT2J 

-1 
7r 

(19) 

and it can be shown that5 

1 ho (w,)- 27.j 1r2 
P ?cL 4B 
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so that ceff = 1 E(wP) FA (up) can be written as 
P 

8 rrf 2A Pmax 7rf 1 sin x cos(x/2) e jw ITo p 
-- - - 

2 -P- 
?rf 7r n P 2 X -1 

where x = (0 T rf/2) and we have assumed 7~ = 
P 

7rf/2. We show in Figure 3 a plot of 
p. (x) and o (sin x/x) and sin (x/2)/(x/2). The summation out to 3 frf gives = 1 so 
that we obtain 

8 B max * (APT/&) 
Eeff=;;Z - P (20) 

Relative to an ideal analogue system giving the same damping rate the gain A would 
have to be 2/.834 = 2.4 times greater. Hence, the gain should be such that a displa- 
cement of .834x5.65 = 4.7mm peak will produce full output power since our initial 
calculation of the damping rate and hence c did not include the l/B factor. We note 
here that in the summation for the AGS (the sin x/2/x/2 transfer function) we obtain a 
factor of 2 but since there is a l/4 rather than a l/2 in the overall transfer function the E eff 
remains essentially the same. Now the e-jwpaT o phase factor should really be written as 
exp -j($-opToJ) where $ is the phase of the correction signal. This can be written as 

($-awp To) = (II, - 2x8 QfoTol ) = II, - 2~ s Q1 = (2n + 1)7r/2 

where s Q = (5-Q) or (6-Q), since II, will track any changes in time i.e., s Q. 

Next we consider the other potentially unstable coupled bunch mode (-6 + Q) and 
evaluate the summation for m = 0, x = 0. It turns out to be 0.975 for Q = 4.75 which is 
the value used above (rather than 4.8). Hence, the damping rate would be the same but 
the growth rate for this mode would be only 0.12 times that of the (-5 +Q) mode. 
Thus, the loop gain is determined by the mode (n = 1). 

Finally, let us consider what happens for x z 0 both for the m = 0 and the m = 1 
modes since the latter is unstable in this case also (n= 1 still). We can show that for 
m==O and X=X, 6yo - (cos +/2) rather than (2 co&n) the x = 0 value, due to the 
integration. Also, we can show using equation 16 that ~yl - -4 sin +/37t for x = X, 

TR = Trf/2. In Figure 4 we show plots of p. (x) and p1 (x) for x = + 71 as well as +- 
sin x/x from which we can readily obtain approximate values for the summation needed to 
find c eff for these two cases. We obtain 0.71 for the x = 71, m = 0 case rather than * 1 
as in the x = 0 case. The m = 1, x = 71 sum is 0.67 relative to the x = 0, m = 0 value of 1. 
Thus, if A remains the same the damping rate for the m = 0, x = 71 case becomes 
(l/2 x 7t/2 x 0.71) = 0.56 of the x = 0 rate. However, the growth rate for this mode 
decreases by a factor of = 10. This result can be obtained by using either equation 1 or 
13. Hence, a finite amount of negative chromaticity is desirable to control the growth 
rate of this mode. 

Now for the m = 1 mode with x = x the growth rate would be = 0.5/( 1 + 1) or one 
quarter of the m= 0, x =0 value if it is unstable. On the other hand, the damping rate 
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would be ( ~/2)x(4/3x)x.67+ (1 + 1) = .222 of the X = 0 m = 0 value if the loop parame- 
ters were unchanged. For X = 7r/2 we find also that the loop gain is still less than the 
growth rate for the m= 1 case. Here the m = 0 growth rate is still 58% of the x =0 
value. We conclude that operating at small values of negative chromatic@ would be 
helpful if the m= 1 mode is near the intensity threshold for instability. This is because 
the growth rate would be less than the values calculated by equation 1 which is only 
valid well above the intensity threshold. 

Acknowledgement: The possibility of using a digital signal processing system similar to 
that being designed for the AGS plus a four turn delay for the Booster damper was 
suggested by Y. Y. Lee and W. Weng. 
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Appendix 

111 the AGS narrow band analogue feedback system3 a vertical difference signal is 
obtained at one point on the ring and this signal after some filtering is applied to a pair of 
deflecting coils located downstream at an azimathal angle 8. It can be shown that for a 
given value of p (ignoring the filter delay) the damping rate is proportional to 

Sin [IpI@ - (IPI-Q)qyl 

where ;r is the time delay of the cables and electronics (assumed wideband). For a vertical 
pickup at D-8 and a pair of deflection coils centered between QE-2 and QE-3 we have 
8 = 18.750 while the phase advance between the pickup and kicker is 90° at Q = 4.8. We 
estimate about 50 nsec cable delay and 35 nsec for the electronics. Then for I p I = 5 and 
Q = 4.6 we obtain Sin (93.75 - 14)O = .984 at 1.5 GeV where f. = 1.336 MHz. for I p I = 6 
the result is Sin 62.2O = .88 and I p I = 4 gives Sin 93.8O = .997. Now the loop filter 
would have to transmit the lowest frequencies present in the bunch spectrum for each of 
these modes, i.e., ( I p I - Q) f. or .4 fo, .6 f. 1.4 f,, and reject all the other sidebands and 3 
fo, 6 f. etc. In order to do this a tuneable filter that had a very sharp cutoff at frf/2 would 
be required. This would entail a multistage design that over the passband would introduce 
large additional contributions to the time delay 7. Hence, such a system is not feasible in 
the Booster. 

-lO- 


